
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INCORPORATION OF A DIFFERENTIAL GLOBAL
POSITIONING

SYSTEM (DGPS) IN THE CONTROL OF AN UNMANNED
AERIAL VEHICLE (UAV) FOR PRECISE NAVIGATION IN

THE LOCAL TANGENT PLANE (LTP)

by

Peyton M. Allen

March, 1997

f

Thesis Advisor: Isaac Kaminer

Approved for public release; distribution is unlimited.

19980102 123 DTIC QUALITY IMSP1CTED 4

Form Approved OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE INCORPORATION OF A DIFFERENTIAL
GLOBAL POSITIONING SYSTEM (DGPS) IN THE CONTROL OF
AN UNMANNED AERIAL VEHICLE (UAV) FOR PRECISE
NAVIGATION IN THE LOCAL TANGENT PLANE (LTP)

6. AUTHOR(S) Allen, Peyton M.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words) The purpose of this thesis is to incorporate the Global Positioning

System (GPS) and Inertial Navigation System (INS), for the guidance of an unmanned aerial vehicle
(UAV) seeking precise navigation in a Local Tangent Plane (LTP). By applying the Differential
Positioning technique, GPS position data becomes more accurate. This position can then be referenced
to a known location on the ground in order to give the aircraft's position in the Local Tangent Plane.

The FOG-R UAV at the Naval Postgraduate School will be used for autonomous flight testing
using a Texas Instruments TMS320C30 Digital Signal Processor (DSP). This DSP is hosted on an
IBM compatible PC, and is controlled via Integrated System's AC 100 control system design and
implementation software package.

The GPS receiver used throughout this thesis is a Motorola PVT-6 OEM. Another identical GPS
receiver is used as a reference station, thus providing the Differential capability. The objectives of this
thesis are: the system must be able to accept current location from the GPS and convert it to LTP,
display the LTP coordinates, numerically and graphically, and be able to easily change the origin
coordinates. Finally, the achieved accuracy of the differential setup is examined.
14. SUBJECT TERMS *Differential Global Positioning System (DGPS), Unmanned

Aerial Vehicle (UAV), Local Tangent Plane (LTP), Navigation

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES 74

16. PRICE CODE

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

INCORPORATION OF A DIFFERENTIAL GLOBAL POSITIONING

SYSTEM (DGPS) IN THE CONTROL OF AN UNMANNED AERIAL

VEHICLE (UAV) FOR PRECISE NAVIGATION IN THE LOCAL

TANGENT PLANE (LTP)

Peyton M. Allen
Lieutenant, United States Navy

B.S., United States Naval Academy, 1989

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
March 1997

"T^TWi /?- A
Peyton M. Allen

Isaac I. Kaminer, Thesis Advisor

Richard M. Howard, Second Reader

Daniel J. Collins, Chairman

Department of Aeronautics and Astronautics

in

IV

ABSTRACT

The purpose of this thesis is to incorporate the Global Positioning System (GPS)

and Inertial Navigation System (INS), for the guidance of an unmanned aerial vehicle

(UAV) seeking precise navigation in a Local Tangent Plane (LTP). By applying the

Differential Positioning technique, GPS position data becomes more accurate. This

position can then be referenced to a known location on the ground in order to give the

aircraft's position in the Local Tangent Plane.

The FOG-R UAV at the Naval Postgraduate School will be used for autonomous

flight testing using a Texas Instruments TMS320C30 Digital Signal Processor (DSP).

This DSP is hosted on an IBM compatible PC, and is controlled via Integrated System's

AC 100 control system design and implementation software package.

The GPS receiver used throughout this thesis is a Motorola PVT-6 OEM. Another

identical GPS receiver is used as a reference station, thus providing the Differential

capability. The objectives of this thesis are: the system must be able to accept current

location from the GPS and convert it to LTP, display the LTP coordinates, numerically

and graphically, and be able to easily change the origin coordinates. Finally, the achieved

accuracy of the differential setup is examined.

-v-

-VI-

TABLE OF CONTENTS

I. INTRODUCTION 1

II. THE GLOBAL POSITIONING SYSTEM OVERVIEW 3

A. THE SPACE SEGMENT 3

B. THE CONTROL SEGMENT 4

C. THE USER SEGMENT 5

III. SETUP OVERVIEW 11

A. AIRBORNE COMPONENTS 11

B. GROUND COMPONENTS 11

IV. COORDINATE TRANSFORMATIONS 13

V. CALIBRATION AND VALIDATION 17

A. CALIBRATION 17

B. VALIDATION 19

VI. FLIGHT TEST 21

A. FLIGHT TEST SETUP 21

B. FLIGHTS AT CHUALAR 22

C. FLIGHT TEST DATA 23

VII. CONCLUSIONS AND RECOMMENDATIONS 25

A. CONCLUSIONS 25

B. RECOMMENDATIONS 25

APPENDIX A. FIGURES 27

-vii-

APPENDIX B. PROFESSOR CLYNCH'S DATA 37

APPENDIX C. DATA VERIFICATION CODE 39

APPENDIX D. DATA TRANSFORMATION VERIFICATION 43

APPENDIX E. COORDINATE TRANSFORMATION CODE 49

LIST OF REFERENCES 61

INITIAL DISTRIBUTION LIST 63

-vui-

ACKNOWLEDGMENTS

I would like to thank the people who contributed to this thesis. Dr. 1.1. Kaminer

for his guidance, teaching and patience. LCDR Eric Hallberg for his assistance in

helping to solve the technical issues that arose. Jim Zanino for his computer knowledge.

Dr. J. Clynch for providing the means and knowledge required to survey an accurate

origin for our local tangent plane.

Most of all, I would like to thank my wife Debra for her constant support and

understanding.

-IX-

-X-

I. INTRODUCTION

Ever since the Global Positioning System (GPS) first became active, users have

been attempting to make it more accurate and thus more useful. The civilian users only

have access to a degraded signal with a nominal accuracy of one hundred meters, while

the military has access to a signal that has an accuracy of about sixteen meters. By setting

up a reference station at a known location, many of the errors in the civilian signal can be

determined and thus a corrective signal can be sent out to all receivers within a

geographical area. This is called differential GPS (DGPS) and its accuracy is easily

within three meters. This level of accuracy makes it appealing to those who need precise

navigation. However there are several problems even with DGPS: 1) Position

information is updated only once a second, and thus can't keep up with large

accelerations; 2) The signal is subject to temporary loss or degradation in accuracy for

various reasons; and 3) The position still varies randomly within its "bubble" of

accuracy. Due to all of these problems it is still necessary to integrate the DGPS inputs

with the type of constant inputs found in an Inertial Measuring Unit (IMU).

The primary goal of this project was to provide the vehicle's current position

(using the DGPS) in a local tangent plane in a manner such that it could be used to

determine the necessary flight path required in order to follow a precise track over the

ground. This information could then be integrated with INS data in order to send a

continuous signal to the flight path controller. This system needed to be able to:

• Accept current location from the Differential Global Positioning System
(DGPS) receiver and convert it to Local Tangent Plane (LTP) coordinates.

• Easily accept new origin coordinates for the Local Tangent Plane, to
allow the system to be utilized in an arbitrary location.

• Display coordinates in the LTP in meters north, east, and down.
• Provide a graphical representation of the flight path relative to the origin of the

LTP.

This could all be accomplished through the use of the MATRIXX Product Family

of rapid prototyping software available from Integrated Systems Incorporated (ISI). This

software utilizes a program called RealSim which uses a Graphical User Interface (GUI)

to step the engineer through the design process. This thesis describes how these design

requirements were met in the RealSim environment.

The Unmanned Aerial Vehicle (UAV) used for this thesis was the FOG-R UAV,

commonly called the "Frog." It was acquired from the TEXCOM Experimentation Center

at Fort Hunter Liggett, CA. It has a ten foot wingspan, a twenty pound payload capability,

and is equipped with a full avionics suite, including Inertial Measuring Unit (IMU), Global

Positioning System (GPS), and air data sensors. It is controlled through the use of a Radio

Frequency (RF) link that sends a Pulse Width Modulated (PWM) signal which drives the

aircraft's actuators. One of these links was modified and connected to the controller on

the ground so the aircraft could be flown by the AC 100 computer flight path controller

system. A differential GPS was incorporated along with the requisite additional antennas

to transmit and receive the correction signal to the GPS computed position.

II. THE GLOBAL POSITIONING SYSTEM OVERVIEW

In order to fully understand and evaluate the positioning information obtained by

the GPS, its principles of operation will be discussed. The system consists of three major

segments:

• The space segment

• The control segment

• The user segment

A. THE SPACE SEGMENT

The fully operational space segment consists of twenty-four satellites that are

placed in six different orbital planes at an altitude of 10,898 nautical miles above the

surface of the earth. Of these satellites, nine are Block II and fifteen are Block II A. Three

of them are on-orbit spares. They are all in twelve hour orbits arranged such that

anywhere from five to eight satellites are visible from any point on the surface of the

earth at any given time. [Ref. 1]

The information provided by the satellites to the users is sent to earth by

means of two L-band carrier signals, LI (1575.42 MHZ) and L2 (1227.6 MHZ). The LI

frequency carries the navigation message and the Standard Positioning System (SPS)

code signals while the L2 frequency is used to measure the ionospheric delay by Precise

Positioning System (PPS) equipped receivers. The navigation message is a 50 Hz signal

consisting of data bits that describe the GPS satellite orbits, clock corrections, and other

parameters. The Coarse Acquisition (C/A) code modulates the LI carrier phase and is the

basis for the civil SPS. The P-code (Precise) modulates both the LI and the L2 carrier

phases and is protected by encryption so that full positioning accuracy is denied to

unauthorized users. Although all satellites are transmitting on the same frequency, they

are each assigned their own unique C/A and P codes so that the GPS receivers can

distinguish between them.

In an ideal world, the satellites should stay right on their orbits as they travel

around the earth; unfortunately, this is not the case since their orbits are disturbed by

various forces. The most important ones are: the gravitational perturbation of the earth,

solar and lunar gravity, solar radiation pressure, and various gravity anomalies. Therefore,

there exists the need for a control center that closely follows each satellite's behavior and

takes the required corrective actions when necessary. This is the task of the control

segment.

B. THE CONTROL SEGMENT

The control segment has the sole responsibility to make sure that the GPS

satellites are in their proper orbit, functioning correctly, and transmitting the correct

values of the navigational parameters. The GPS ground network consists of five active-

tracking ground antennas and five passive-tracking monitor stations, located around the

world.

The active-tracking ground antennas actively track the GPS satellites, transmitting

commands and navigation uploads, and recording telemetry over S-band links. The

passive-tracking monitor stations passively track the L-band signals transmitted by the

satellites to determine the vehicle's navigational data.

All of the above data is collected at the Falcon Air Force Base, Colorado Springs,

Colorado, where the master control station of the GPS control segment is located. The

collected data is used as an input to a Kaiman Filter from which the orbital states of the

space vehicles can be determined. New navigational parameters are then passed to the

satellites via the S-band radio links. The master control station personnel are also

responsible for maneuvering the satellites to keep them in their preassigned orbits. When

a satellite's performance is inaccurate or a mechanical failure has occurred, the vehicle is

considered "unhealthy" and a special warning is incorporated in its navigational message

to warn the GPS users.

With the whole GPS infrastructure perfectly working, the only remaining

component required for a navigator to obtain a position fix is a GPS receiver which will

receive, decode, and process the navigational data transmitted by the satellites. The user's

end of the GPS, the GPS receiver, is referred to as the user segment.

C. THE USER SEGMENT

The user segment is responsible for obtaining the navigational signals provided by

the satellites and extracting the precise values of three dimensional position, velocity, and

time. There are several types of receivers. They are classified by how many channels they

have.

Each separate channel is a radio receiver that can track one or more satellites. If it

tracks one satellite, it is dedicated full time to that one satellite. If it tracks more than one

satellite, it has to use a time sharing technique, that is, tracking each satellite sequentially

for a specified amount of time. The time sharing technique yields poorer results and it

was used by the very first receivers built. A typical number of separate channels for a

modern receiver is six to twelve.

There are two major observables that can be used by a receiver in order to

determine its position. The first is the pseudo-range and the second is the carrier phase.

Velocity can be computed several ways also. The validity of these values can be affected

by several things: accuracy of measurements, errors, and the addition of a differential

station. The following is a discussion of each of these elements.

1. Pseudo-Range Navigation

Each satellite timetags its transmissions so that when they are received by the

receiver, the latter knows the transmission time. The receiver also knows the time that the

transmission was received from its internal clock. The receiver software then extracts the

time difference between transmission and reception, that is, the time it takes the signal to

travel from the satellite to the receiver. Multiplying this time difference by the speed of

light will yield the actual distance between the satellite and the receiver.

Onboard the satellites, extremely precise and expensive atomic clocks keep track

of GPS time. On the other end, the receivers carry relatively cheap clocks which are not

very accurate. A one billionth of a second uncertainty in the time difference measurement

multiplied by the speed of light yields a range uncertainty of one foot. So the receiver

clock inaccuracy is an error that has to be taken care of during the range determination.

The calculated range is called pseudo-range since it is not the actual range due to the

receiver clock error.

By decoding the satellite message, the GPS receiver can also obtain the satellite's

position (ephemeris) in earth-centered earth-fixed coordinates. By doing this for four

satellites it can solve the following set of equations and determine its position coordinates

(x, y, z) and the receiver clock error. All positioning coordinates (x,y,z) are given in

earth-centered earth-fixed coordinate system:

*i =\/(*i -*)2 +(^1 -yf+(z, -z? +c *dt (2.1a)

R2=sj(x2 -xf +(y2 -yf +(z2 -zf +c *dt (2.1b)

R3 =J(x3 -xf +03 -yf+(z3 -zf+c*dt (2.1c)

*4 =)l(x4 -x? +04 -yf+(Z4 ~z? +c *d* (2. Id)

where Pv; is the pseudo-range, dt is the receiver clock error and c is the speed of light. The

subscripts indicate the satellite being tracked.

Now the position fix of the receiver, which is obtained in earth-centered

earth-fixed coordinates, must be transformed to the user's preferred coordinate system. It

should be noted that the above equations represent a very basic problem formulation. In

real life, the receiver's software has to take care of many other factors that are involved in

the problem solution (such as satellite clock offsets and ionospheric delays). In fact many

of the problem parameters are obtained as states of a Kaiman filter, rather than as straight

forward algebraic solutions.

2. Carrier Phase

Use of the carrier phase observable is a relatively new technique. When a GPS

receiver acquires the signal of a satellite, it can measure the fractional part of a single

cycle of the carrier wave. As every complete cycle represents distance equal to the

wavelength of the carrier wave (20 cm for the LI frequency), the carrier phase observable

can be translated to range information from the particular satellite. Of course we cannot

determine a pseudo-range only from carrier phase measurements because it is impossible

to know how many complete cycles there are between the satellite and the receiver

without any other information. What we can do is track the carrier phase changes, and

feed them into the Kaiman filter mentioned above to "smooth" pseudo-range estimates.

3. Accuracy

The accuracy of the Standard Positioning System is intentionally degraded by the

Department of Defense (DOD) by modulating the position data with the Selective

Availability (SA) code. According to the 1994 Federal Radionavigation Plan, the SPS

signal has a predictable accuracy of 100 meters horizontal and 156 meters vertical. These

are 95% accuracies, the value of two standard deviations of radial error. These values are

not totally due to the SA coding on the signal; there are other errors added to the SA

which add up to these figures.

4. GPS Error Sources

There are three categories of GPS errors: noise, bias, and blunders. The noise

errors are the combined effect of PRN code noise (about 1 meter) and noise within the

receivers (about 1 meter).

8

Bias errors have several causal factors. One is Selective Availability, which is the

intentional degradation of the SPS signal by a time varying bias. SA was put into place by

the DOD in order to limit the accuracy of GPS for non-U.S. military users. The C/A code

is thus reduced from an accuracy of about 30 meters to a degraded accuracy of about 100

meters. Some of the other bias sources are: satellite clock errors uncorrected by the

Control Segment (about 1 meter), ephemeris data errors (about 1 meter), unmodeled

Tropospheric delays (about 1 meter), unmodeled ionospheric delays (about 10 meters),

and multipath (about lA meter). "Noise and bias errors combine, resulting in typical

ranging errors of around fifteen meters for each satellite used in the position

solution."[Ref. 1]

Blunders can result in large errors on the magnitude of hundreds of kilometers and

can come from a variety of sources. There are human errors such as Control Segment

mistakes or the user choosing the wrong geodetic datum. Then there are receiver errors

which can be either hardware or software related. Essentially, a blunder is a failure of

some part of the total system to operate as designed.

5. Geometric Dilution of Precision (GDOP)

GDOP is not defined as an error but rather as a "factor" in the accuracy of the

GPS data. GDOP is a measurement of the respective angles between the satellites and the

user. It is defined as being inversely proportional to the volume of the shape described by

the unit-vectors from the receiver to the satellites used in a position fix. Thus a large unit-

vector-volume will produce a low value of GDOP which is good, while a poor GDOP

will result when the angles from the receiver to the set of satellites used are small.

10

III. SETUP OVERVIEW

For an in-depth discussion of each piece of the hardware and software utilized in

this project see Chapter 3 of Ref. 2.

There are two major sets of components associated with this thesis:

• The airborne components

• The ground components

Each of these will be looked at for their contribution.

A. AIRBORNE COMPONENTS

The largest of these is quite obviously the Unmanned Aerial Vehicle (UAV) itself.

The Frog is a high-wing, high-engine, tricycle gear aircraft with both forward and mid-

fuselage payload sections. It is equipped for autonomous flight with an avionics suite.

This suite consists of the following components: an IMU, air data sensors, and a Motorola

PVT-6 DGPS receiver. These devices transmit their data to the ground station and receive

the differential corrections via two spread spectrum RF links. In addition there is a Pulse

Code Modulation (PCM) receiver that is used to drive the actuators on the control

surfaces and the throttle. The Motorola PVT-6 receiver was mounted in the mid-fuselage

section and connected to the antenna which was mounted on the top side of the

empennage midway to the tail.

B. GROUND COMPONENTS

The majority of the equipment was kept on the ground for several reasons: space

and weight restrictions on the aircraft, ease of operating and maintaining, and of course

11

necessity. The ground station handles all of the flight management functions and data

collection. It consists of the following three components:

• Sparc II Workstation: this computer contains the software package RealSim
that is used to design, code, and implement a control algorithm.

• Luggable PC: this computer contains the TIC30 digital processor, and the
DSP_FLEX board that holds the IP_Modules. The IP_Modules are discussed in
Ref. 2, Chapter 3, Part B.

• Communications Box: this box houses various devices used to communicate
with the UAV.

The differential antenna had to be on the ground at a known location in order to

provide an accurate reference point. Here it was connected to the second of the Motorola

PVT-6 receivers which was housed in the communications box. The other items in this

box were the following: two DGR-115 spread spectrum RF modems which were used to

transmit and receive telemetry information, and a Futaba PCM transmitter which had

been modified to give the computer the ability to control the aircraft. This

communications box was then hooked up to the luggable PC via four ribbon cables from

the four IP_Modules. This computer actually controlled the aircraft and received the

aircraft data output. It was this data which was decoded and sent to the Sun workstation

via a standard TCP/IP connection. Here it could be easily utilized by the RealSim

software for viewing of the UAV's position and flight parameters.

12

IV. COORDINATE TRANSFORMATIONS

In order to utilize the data from the GPS receiver, the data first needs to be

converted to a more useful format. The data for latitude and longitude is received as

milliseconds of degrees and it is most useful as meters north, east and down as defined by

the LTP.

Since the receiver puts out latitude and longitude in milliseconds of degrees, the

first step is to convert this into degrees of latitude and longitude, the Geodetic Coordinate

System. In order to do this, the milliseconds are divided by 3,600,000, the number of

milliseconds per degree.

The second step is to use a coordinate transformation to convert to a cartesian

coordinate system called the Earth-Centered Earth-Fixed (ECEF) frame. (For a review of

coordinate transformation matrices see Ref. 3.) In order to make this conversion, there are

several other values which need to be known: h (altitude in meters) and N (the length of

the ellipsoidal normal from the ellipsoidal surface to its intersection with the ECEF z-axis

in meters). As shown in Chapter 2 of Ref. 3, N can be determined from the eccentricity

factor (e), the local latitude(<j>), and the semi-major axis of the Earth ellipsoid (a).

N=
V(l-e2xsin2(cj>)) (4-1)

13

Using this information, and introducing longitude (A), one can then obtain the

transformations from a geodetic to a cartesian representation of a position in the ECEF

coordinate system as:

x=(N+/z)cos((j>)cos(X)

y=(JV+/z)cos(<j))sin(A)

z=[iV(l-e2)+/*]sin((j))

(4.2a)

(4.2b)

(4.2c)

Now the transformation from ECEF to LTP must be applied; however, the LTP

cannot be defined without an origin so this point must also be resolved in ECEF. In order

to determine location in the LTP, a vector can be built from this origin to the point by

subtracting the point's x, y, and z coordinates from those of the origin. It is this

difference vector which will then be converted to give LTP coordinates, by multiplying it

with a rotation matrix — R, from ECEF to Tangent plane. This transformation will

involve one rotation about the z-axis and one rotation about the y'-axis, which will result

in an Up, East, North axis orientation. This will then be converted to a North, East, Down

system with one more matrix multiplication.

First the rotation about the z-axis is through the angle X and results in this matrix:

cos(A) sin(A) 0

-sin(A) cos(A) 0

0 0 1

(4.3)

14

The next rotation is about the new y-axis and is through the angle (j), resulting in:

cos(<j)) 0 sin((j))

0 1 0

-sin((f)) 0 cos((j>)

(4.4)

When these two are multiplied together they result in an Up, East, North {UEN}

coordinate system defined by:

cos((f))cos(A) cos((j))sin(A) sin((j>)

-sin(/\.) cos(A) 0

-sin((j>)cos(A) -sin((j))sin(A) cos((J))

(4.5)

Since we desire a North, East, Down {NED} system (commonly used for aircraft

applications), the above matrix must be multiplied by a matrix which can swap the first

and last row and make the new last row the negative of the old first row. This is the

required matrix

(4.6)

When the previous two matrices are multiplied together one comes up with the

required transformation matrix R, which needs to multiply the position difference vector

in order to complete the transformation from the ECEF coordinate system to the LTP

system (T).

0 0 1

0 1 0

-1 0 0

(x , v , z)T =ER x (Ax , Av , Az), (4.7)

15

Here :ER =

-sin((j))cos(A) -sin((j))sin(A) cos((J))

-sin(A) cos(A) 0

-cos((J))cos(A) -cos(c|))sin(A) -sin(cj))

(4.8)

4> = latitude of the origin, X = longitude of the origin

This will result in a three-dimensional vector describing the location of the aircraft

in the Local Tangent Plane in meters from the origin. This particular rotation matrix

results in a North, East, Down {NED} reference frame from the origin.

These computations were implemented in the MATRIXX software package. First

the code was written in XMATH in order to validate the equations, and then transferred

to the SystemBuild environment. Here it was rewritten as a series of Superblocks so that

it could be easily inserted into the already designed SystemBuild controller for the

aircraft. In RealSim a Graphical User Interface (GUI) page was created in order to allow

for easy editing of the origin point so that this controller can be used anywhere there is a

known position on which to set the differential antenna. This GUI also allows the current

location of the aircraft in the LTP to be viewed both numerically and graphically on two

2-dimensional plots (x vs y, and y vs z). (See App. A)

16

V. CALIBRATION AND VALIDATION

Calibration was carried out in order to determine the accuracy of this DGPS

configuration and the validity of the equations and data. This was done prior to

implementing the code into the controller in order to ensure that troubleshooting could be

done in an expeditious manner. This chapter will deal with first the calibration and then

the validation.

A. CALIBRATION

The calibration was conducted in the parking lot of the Mechanical Engineering

(ME) building on campus. In this parking lot are several markers for surveyed points

placed by Dr. Clynch of the Oceanography Department. (See App. B) The differential

receiver's antenna was placed over marker NPS-5005 for all of the data sets.

There were four sets of data collected from a static position and two sets of

moving data collected. The data collected from the stationary runs is summed up in Table

5.1. The first two (#1 and #2) of the four stationary sets were taken with the aircraft co-

located with the differential antenna. Each of these had a valid differential, three

dimensional fix the entire time. The remaining two stationary sets (#3 and #4) were taken

with the aircraft at position NPS-5003 and with the differential antenna remaining at

position NPS-5005. These also had a valid differential, three dimensional fix.

The data set collected with the antennas virtually on top of each other had a

constant value with variations so small as to be insignificant (Figures 5.1 and 5.2). The

two stationary sets taken at a distance (Figures 5.3 and 5.4) did have some deviation in

17

their values over time; however, the horizontal accuracy was still under 2 meters. The

mean and standard deviation values here can be looked at in a variety of axes since the

values start as Geodetic coordinates, are transformed to ECEF coordinates, and then

converted to LTP coordinates. The errors that we are most interested in are those in the

LTP, since this will be the coordinate system in which we are will be programming and

monitoring the vehicle's flight. As the numbers show, the system is fairly accurate in the

horizontal plane of this navigation frame and is slightly less accurate in the vertical plane

of this navigation frame. This is to be expected since the errors are almost twice as bad

vertically as opposed to horizontally for GPS. [Ref. 4]

Run#l Run #2 Run #3 Run #4

North sigma 1.465e-14 1.910e-14 1.527 1.477

East sigma 1.776e-15 8.660e-15 1.477 1.558

Down sigma 4.263e-14 1.776e-15 4.037 2.815
Table 5.1 Values of deviation in LTP axes for stationary runs (meters).

The values for the moving data sets are listed in Table 5.2. The standard deviation

here was around one meter with a mean error from the path of less than 1.5 meters. The

sample size for these measurements was small compared to the stationary (less than 100

data points versus around 800 data points); however, the data does show that the system

will maintain its accuracy while in motion and not necessarily degrade to an unacceptable

status. Runs #5a and #6a (Figures 5.5 and 5.7) were conducted from point NPS-5005 to

point NPS-5004, while runs #5b and #6b (Figures 5.6 and 5.8) were the return trip. To

obtain this data, the UAV was pushed by hand between these two points. However, there

was no line marked out on the ground and thus some additional errors could have been

18

induced. It can be noted that both of the run-a columns have a greater mean error than the

run-b columns; part of this error was likely self-induced. The marker at point NPS-5004

was not as visible as the differential antenna parked on top of point NPS-5005, and thus

was more difficult to walk a straight line towards. Lesson learned - paint the lines on the

ground so as not to induce extra errors.

Run#5a Run#5b Run#6a Run#6b

North sigma 1.301 0.720 1.065 1.596

East sigma 0.876 0.520 1.157 0.820

Down sigma 1.957 0.929 2.935 0.523

Mean error 2.529 1.271 2.816 0.738
Table 5.2 Values of deviation in LTP axes for non-stationary runs (meters).

B. VALIDATION

In the validation phase, a program was written to compute the coordinate

transformation from geodetic coordinates to ECEF coordinates. Prof. Clynch's data for

the reference points in the Mechanical Engineering parking lot was run through this

program "clynchck.ms" (see App. C), and compared to the values which he listed for the

x, y, and z coordinates (see App. B). Once this conversion was validated, two points

were then used to validate the code for the conversion from ECEF to LTP. One point was

input as the origin and the other as an aircraft position, in order to check the LTP

transformation and ensure that the proper distances and directions were being returned.

All of the conversions matched with Dr. Clynch's down to the millimeter, at which point

his numbers were rounded off. The LTP coordinates showed correlation to ± 1 millimeter

19

horizontally and vertically. This served to prove the accuracy of the program for both

coordinate transformation and LTP calculation. These results can be seenin App. D.

20

VI. FLIGHT TEST

A. FLIGHT TEST SETUP

In order to utilize the LTP data supplied by this project during a flight, there are

two initial conditions which must be configured prior to takeoff. The coordinates for the

origin of the LTP must be confirmed in both the RealSim software and in the coding for

the DGPS receiver. Once all of the rest of the pre-flight setup has been completed then

the following procedure can be used to ensure that the Local Tangent Plane position of

the UAV will be computed correctly. All of the computations assume that the Differential

antenna is the location of the origin of the LTP.

In order to check the coordinates in the RealSim software one follows this

procedure. From the GUI Master page select the GPSJLTP page and view the coordinates

displayed for the latitude, longitude, and geoid height of the origin. If these coordinates

are correct then the next step is to check the coordinates of the DGPS receiver; if they are

not correct, then they need to be updated. This is accomplished by double clicking in the

upper right hand corner of each of the three coordinate display boxes and thus opening up

the data input menu for each of these. One of the selections will be to change the initial

value of the box; this is where the old value will be shown. Delete this value and type in

the new value. Select the "Done" option once the value is correct and then proceed to the

next box. When all three values are correct, check the DGPS receiver.

To change the values for the location of the DGPS receiver, which needs to be

done in order to receive proper corrections for the LTP values, the luggable PC will be

21

used. At the main C prompt, type in "cd GPS40", then from that directory type "GPS." At

the next prompt the user will be asked to enter a commport to be used; select commport

2. Now for the position to be displayed enter "pos: 1". The next few steps are for actually

entering the location information. The following command is found in Ref. 5 on page 36.

From the GPS40 directory main page, type in the php (position-hold position) command,

which will be the following:" php:xxx_xx_xx.xxx_jyyy_yy_jy.yyy_2zz.zzz_www"

Where latitude is represented by the x, longitude by the y, height by the z, the w is for

"GPS" or "MSL" depending on which type of height is being used, and the "_" represents

a space. Latitude and Longitude both need to be entered as "deg_min_sec.thousandths of

seconds" with the very first position being a "+" or "-" to indicate proper hemisphere.

Height is entered in "meters.thousandths of meters." This format is not the same as the

manual suggests. However, it was determined through trial and error that this is the

format which needs to be used.

B. FLIGHTS AT CHUALAR

For flights that take place at Chualar remote control (RC) airfield, which is where

all flights so far have occurred, the LTP origin location is already entered in the

appropriate places. Now all that remains is to ensure that the differential antenna is placed

on top of the appropriate spot.

There is a six inch aluminum disk, called a survey marker, cemented in to place

on the ground in a location which has been surveyed to an accuracy of ±9 cm. This survey

was accomplished with the help of Dr. Clynch and his GPS equipment. The disk is found

by standing at the northwest corner of the awning, facing the runway and then measuring

22

off about 24 feet on a heading of 035 ° and looking down. The disk has been stamped

'CHUALAR-1'. This is the spot over which the differential antenna should be placed. In

the event that flights are conducted elsewhere and then resumed at Chualar, the

coordinates for the location of the disk are given below:

Latitude: 36.55020693 degrees
Longitude: -121.54329221 degrees
Height, Geoid: -5.67 meters

C. FLIGHT TEST DATA

During the flight testing conducted on 31 January 1997 at Chualar RC field, the

pilot, Don Meeks, was asked to perform a circle in order to store this data for later

analysis. This data was run through the LTP conversion program ('e2tang.ms' found in

App. E) and was plotted (Figure 6.1 of App. A). As can be seen, he maintained a fairly

constant circle of approximately 230-250 meters in diameter and deviated in altitude by

only 34 meters over a period of almost 45 seconds. The graph of north vs. east (in Figure

6.1) is one of the two 2-dimensional graphs which will be used for real-time display and

analysis for future flights. It can be used to monitor flight testing parameters and thus

enable more meaningful data collection and interpretation.

23

24

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has met the primary goal of providing the UAV's current position

(from DGPS) in a local tangent plane in a manner such that it could be used to determine

the necessary flight path required to follow a precise track over the ground.

This was done using the MATRIXX rapid prototyping software. The Interactive

Animator (IA) was used to design a GUI in which the origin coordinates could be easily

entered and/or changed. The IA page that was created also displays the UAV's real-time

LTP position on two 2-dimensional graphs.

These LTP coordinates are supplied by the RealSim coded transformation of the

DGPS provided geodetic coordinates. This transformation has been validated by making

multiple conversions on surveyed data points and comparing the output to the survey

values.

Finally, this portion of the controller has been tested in flight and has

demonstrated the conversion to LTP coordinates and the real-time graphical

representation of the flight-path in the local tangent plane.

B. RECOMMENDATIONS

The next step would be to find a place with known coordinates for a line, like

either the ME parking lot or the runway of Chualar field, and conducting multiple runs at

various speeds and checking the accuracy of the data. This would help to determine if the

25

velocities at which the Frog is being flown will allow it the required accuracy to be flown

by the AC100 system all the way to landing. A separate project would be the use of this

transformation in complex trajectory programming and tracking in the LTP.

26

APPENDIX A. FIGURES

Local Tangent Plane Navigation

'.'!Of<i8.i<r.ita$;p$t5i

m mm

iiiG3iii

8.00

8.00

East

I l l l I I I i

8.00

East

I I I 1 I I I I

8.00

Figure 4.1: Interactive Animation display page

27

north vs time east vs time

-1.8577695

0 200 400 600 800 1000

down vs time

-3.1079997

34 69443

0 200 400 600 800 1000

north vs eist

1.3469443

0 200 400 600 800 1000 -1.8577695

Figure 5.1: LTP data for run #1, all vertical axes in meters

28

north vs time east vs time

1 8577695 1.3469443

100 200 300 400 5

down vs time

0 100 200 300 400 500

north vs east

3.1079997 1.3469443

0 100 200 300 400 50

Figure 5.2: LTP data for

0

run #2, all vertical

29

-1.8577695

axes in meters

north vs time east vs time

-16 -

-20

north vs east

800

Figure 5.3: LTP data for run #3, all vertical axes in meters

30

north vs time east vs time

30

20

-10

-20

-30

•200 400 BOO 800 1000

down vs time

rl ^-w' * ftj VA^/^H -

: : i •

-15

-20 -

-25

-10

-15

-20 -

0 200 400 600 800 1000
-25

r™fe^

0 200 400 BOO 800 1000

north vs east

-6 -4-2 0 2

Figure 5.4: LTP data for run #4, all vertical axes in meters

31

north vs time east vs time

-5

-10

-15

-20

-25

-30

-35

-40

-10 -

20 40 60

down vs time

80 100

-15

15

. ..^w .
^v:

,0 20 40 60 80 100 -40 -35 -30 -25 -20 -15 -10 -5 0

Figure 5.5: LTP data for run 5a, all vertical axes in meters

32

north vs time east vs time

-20

-30 -

-40
0 20 60

20

100 0 20 40 60 80 100

down vs time north vs east

-40 -30 -20 -10 0

Figure 5.6: LTP data for run #6a, all vertical axes in meters

33

north vs time east vs time

-5

-10

-15

-20

-25

-30

-35

-40
0 20

5 -

40 60 80

down vs time

-15

T\

0 20 40 60 60 100 -40 -35 -30 -25 -20 -15 -10 -5 0

Figure 5.7: LTP data for run #5b, all vertical axes in meters

34

north vs time east vs time

-ID

-30

-4D
40 SO 80 100 40 60 80 100

down vs time north vs east

20

15 n !

\ 1 x^.. .
0 100 -40 -30 -20 -10 0 10

Figure 5.8: LTP data for run #6b, all vertical axes in meters

35

north vs time east vs time

0 10 20 30 40 50 0 10 20 30 40 50

down vs time north vs east

400

350

300

250

200

150

0 10 20 30 40 50
100

-50 0 50 100 150 200 250 300

Figure 6.1: LTP graphs for flight test on 31 January, all distances in meters

36

APPENDIX B. PROFESSOR CLYNCH'S DATA

Here is the list of coordinates obtained from Professor Clynch in the
Oceanography Department. These points are all in the parking lot of the Mechanical
Engineering building.

NPS-5001

Latitude: 36.594263825° Longitude: -121.877218747°
{ECEF}
X: -2707.544794m Y: -4353.710077m Z: 3781.326527m

Altitude: -19.368m

NPS-5002

Latitude: 36.594318186° Longitude: -121.876852525°
{ECEF}
X: -2707.515098m Y: -4353.724540m Z: 3781.331555m

Altitude: -19.058m

NPS-5003

Latitude: 36.594866908° Longitude: -121.877366719°
{ECEF}
X: -2707.534563m Y: -4353.668714m Z: 3781.379829m

Altitude: -20.088

NPS-5004

Latitude: 36.594590992° Longitude: -121.877094053°
{ECEF}
X: -2707.523751m Y: -4353.697529m Z: 3781.355622m

Altitude: -19.458

NPS-5005

Latitude: 36.594888269° Longitude: -121.877237275°
{ECEF}
X: -2707.524045m Y: -4353.673733m Z: 3781.381822m

Altitude: -19.938

37

LTP DATA FOR VARIOUS COMBINATIONS OF POINTS FROM PROF.
CLYNCH

(All distances are in meters, LTP is defined as {ENU})

Origin: 5001 Data point: 5002
E: 32.770 N: 6.032 U: 0.310

Origin: 5001 Data point: 5003
E: -13.241 N: 66.924 U: -0.720

Origin: 5002 Data point: 5004
E:-21.612 N: 30.273 U: -0.400

Origin: 5003 Data point: 5005
E: 11.583 N: 2.370 U: 0.150

Origin: 5004 Data point: 5005
E: -12.816 N: 32.989 U: -0.480

Origin: 5005 Data point: 5002
E: 34.428 N: -63.262 U: 0.880

38

APPENDIX C. DATA VERIFICATION CODE

The following XMATH code takes the surveyed latitude and longitude of two
points in the Mechanical Engineering parking lot of the Naval Postgraduate School, and
converts this to ECEF and LTP coordinates for verification of the equations to be used in
the RealSim controller.

— clynchck.ms ~
- This program is to be used to confirm the below
- equations by comparison with data from Prof. Cylnch.
- Using data points in ME parking lot from Prof. Clynch

~ Here is the coordinate transformation matrix from ECEF to
- {t} = {UEN}

C = [cos(phi)*cos(lambda) cos(phi)*sin(lambda) sin(phi);
-sin(lambda) cos(lambda) 0;
-sin(phi)*cos(lambda) -sin(phi)*sin(lambda) cos(phi)]

~ This is the xmath clear command
delete *.*

~ Turn on the diary file called e2tang.dat ~
set sessiondiary "e2tang.dat"

~ This next section is for entering the origin in lat and Ion
~ Altitude needs to be entered in meters in Geoid (Ellipsoidal)
-- height.

#p0_lat = 36.594263825?
#p0_lon = -121.877218747?
#h= 13.51

-- This time use pt NPS 5001 as the origin.
#p0_lat = 36.594263825
#p0_lon =-121.877218747
#h = -19.368

~ Here is the data for pt NPS 5004
pOJat = 36.594590992
p0_lon =-121.877094053
h =-19.458

39

~ Here is the data for pt NPS 5005 to be used as the origin.
pOJat = 36.594888269
#p0_lon =-121.877237275
#h = -19.938

~ To get origin in radians, multiply degrees by (pi/180)
p0_lon_r = p0_lon*0.01745
p0_lat_r = p0_lat*0.01745

- Here the lat and Ion of the origin will be converted
— to ECEF coordinates {x,y,z}.
sjphi = sin(pO_lat_r)
c_phi = cos(p0_lat_r)
sjambda = sin(pO_lon_r)
cjambda = cos(p0_lon_r)

- W and 'Eps_sq' are conversion factors for a non-spherical
— Earth. "N is in meters.
- "a" is the semimajor axis of the Earth in meters
Eps_sq = 0.00669437999013
a-6378137
den = (1 -(Eps_sq*(s_phi)A2))A0.5
N = a/den

pO_x = (N+h)*c_phi*c_lambda
p0_y = (N+h)*c_phi*s_lambda
p0_z = ((N*(l-Eps_sq))+h)*s_phi

~ This section is for calculating position in LTP.
~ Here is where the aircraft position will be fed in by the
— receiver as lat and Ion and alt and we will convert it to
- ECEF {xyz}
#pt2_lat = 36.55020693
#pt2_lon =-121.54329221
#h2 = -5.67

- Here is the data for pt NPS 5002
pt2_lat = 36.594318186
pt2_lon =-121.876852525
h2 =-19.058

- Here is the data for pt NPS 5003
pt2_lat = 36.594866908

40

#pt2_lon =-121.877366719
h2 = -20.088

~ Here is the data for pt NPS 5004
#pt2_lat = 36.594590992
#pt2_lon =-121.877094053
#h2 = -19.458

- Here is the data for pt NPS 5005
#pt2_lat = 36.594888269
pt2_lon = -121.877237275
#h2 = -19.938

~ Now make necessary computations for pt2.
pt2_lon_r = pt2_lon*0.01745
pt2_lat_r = pt2_lat*0.01745

s_phi2 = sin(pt2_lat_r)
c_phi2 = cos(pt2_lat_r)
s_lambda2 = sin(pt2_lon_r)
c_lambda2 = cos(pt2_lon_r)

pt2_x = (N+h2)*c_phi2*c_lambda2
pt2_y = (N+h2)*c_phi2*s_lambda2
pt2_z = ((N*(l-Eps_sq))+h2)*s_phi2

— Now to get the difference between the two points
--inECEF{xyz}.

del_x = pt2_x - p0_x
del_y = pt2_y - p0_y
del_z = pt2_z - pOz

del = [del_x; del_y; del_z]

- The angle Lambda is the same as the longitude, while the angle
~ Phi is the same as the latitude,

lambda = p0_lon_r
phi = p0_lat_r

- Now we want to convert to a {NED} coordinate system.
C = [-sin(phi)*cos(lambda), -sin(phi)*sin(lambda), cos(phi);

-sin(lambda), cos(lambda), 0;
-cos(phi)*cos(lambda), -cos(phi)*sin(lambda), -sin(phi)]

41

- The rotation matrix (C) times the delta {x,y,z} will give
~ the aircraft's current position in the tangent plane in
— meters.

NED = [C*del]'?

42

APPENDIX D. DATA TRANSFORMATION VERIFICATION

Below is the result of running Prof. Clynch's ME parking lot coordinates through the
program "Clynchck.ms". This program has the same coordinate transformation routine in it as is
in the RealSim block diagram program implemented into the UAV controller. This was done in
order to compare the resulting values to Prof. Clynch's values in Appendix C, and thus validate
the algorithm. This was successfully accomplished.

Each section will start with an origin point and a distant point to be converted to ECEF
{x,y,z} and also to LTP {NED}. All latitude and longitude values are in degrees, while all ECEF
and LTP values are in meters.

- The origin is pt 5004, and pt2 is 5002 -

pOJat = 36.59459099200000

p0_lon= -1.218770940530000e+002

h =-19.45800000000000

p0_x= -2.707523751060266e+006

P0_jy= -4.353697528851314e+006

p0_z= 3.781355622141596e+006

pt2_lat = 36.59431818600000

pt2_lon= -1.218768525250000e+002

h2 =-19.05800000000000

pt2_x= -2.707515139893124e+006

pt2_y = -4.353724607049335e+006

pt2_z= 3.781331612821002e+006

NED =-30.27349302602244 21.61242196167804 -0.49731272875636

~ Here the origin is pt 5005 and pt2 is 5002 ~

43

pOJat = 36.59488826900000

pOJon = -1.218772372750000e+002

h =-19.93800000000000

pO_x= -2.707524044669156e+006

pO_y = -4.353673733355007e+006

pO_z= 3.781381821735875e+006

pt2_lat= 36.59431818600000

pt2_lon= -1.218768525250000e+002

h2 =-19.05800000000000

pt2_x= -2.707515185012028e+006

pt2_jy= -4.353724679601202e+006

pt2_z= 3.78133167583433 le+006

NED = -63.26254233972134 34.42822152785000 -1.08317434025619

- pO is pt 5001 and pt2 is 5003 -

pOJat = 36.59426382500000

pO_lon= -1.218772187470000e+002

h = -19.36800000000000

pO_x= -2.707544694196697e+006

pO_j= -4.353710077013256e+006

pO_z= 3.781326526895528e+006

pt2_lat = 36.59486690800000

pt2_lon= -1.218773667190000e+002

44

h2 = -20.08800000000000

pt2 x = -2.707534471734960e+006

pt2jy = -4.353668566997226e+006

pt2_z = 3.781379701332720e+006

NED = 66.92464475696794 -13.24074221985020 0.93573232907061

- Here pO is 5002 and pt2 is 5001

pOJat = : 36.59431818600000

pO_lon:
= -1.218768525250000e+002

h = -19.05800000000000

pO_x = -2.707515098488406e+006

pO_y = -4.353724540469932e+006

pO_z = 3.781331554994929e+006

pt2_lat = = 36.59426382500000

pt2_lon = -1.218772187470000e+002

h2 = -19.36800000000000

pt2_x = -2.707544702447331 e+006

pt2_y = -4.353710090280208e+006

pt2_z = 3.781326538418272e+006

NED = -6.03242469894091 -32.77031841760502 0.29067419837140

- - pO is 5005 and pt2 is 5003

pOJat = 36.59488826900000

pO_lon = = -1.218772372750000e+002

45

h =-19.93800000000000

p0_x = -2.707524044669156e+006

p0_y = -4.353673733355007e+006

p0_z = 3.781381821735875e+006

pt2_lat= 36.59486690800000

pt2_lon= -1.218773667190000e+002

h2 = -20.08800000000000

pt2_x = -2.707534566509818e+006

pt2_y= -4.353668719393558e+006

pt2_z= 3.781379833696587e+006

NED= -2.37044078542388-11.58283118250856 0.14238271532010

- p0 is 5005 and pt2 is 5004

pOJat = 36.59488826900000

pO_lon= -1.218772372750000e+002

h =-19.93800000000000

pO_x= -2.707524044669156e+006

p0_y = -4.353673733355007e+006

pO_z= 3.781381821735875e+006

pt2_lat = 36.59459099200000

pt2_lon= -1.218770940530000e+002

h2 =-19.45800000000000

pt2_x= -2.707523796179318e+006

46

pt2_y = -4.353697601402736e+006

pt2_z = 3.781355685155328e+006

NED =-32.98907843753755 12.81575309481910 -0.58606205866278

47

48

APPENDIX E. COORDINATE TRANSFORMATION CODE

This appendix contains the XMATH code used to verify the coordinate transformations
and then implemented into the RealSim block diagram environment. This code will take output
data from the AC 100 flight controller and transform the latitude, longitude, and geoid height
coordinates to a Local Tangent Plane with a north, east, down orientation.

~ e2tang.ms —

- This function converts a vector given in the ECEF coordinate
-- system into the tangent plane

- Using data points in ME parking lot from Prof. Clynch

— This is the xmath clear command
delete *.*
set format="long"

~ Turn on the diary file called e2tang.dat ~
set sessiondiary "run8b.dat"

- This next section is for entering the origin in lat and Ion
~ Altitude needs to be entered in meters in Geoid (Ellipsoidal)
— height.

~ Here is the data for pt NPS 5005 to be used as the origin.

p0_lat = 36.594888269
p0_lon =-121.877237275
h =-19.938

— To get origin in radians, multiply degrees by (pi/180)

p0_lon_r = p0_lon*(pi/l 80)
p0_lat_r = p0_lat*(pi/l 80)

~ Here the lat and Ion of the origin will be converted
-- to ECEF coordinates {x,y,z}.

s_phi = sin(p0_lat_r)
c_phi = cos(p0_lat_r)
slambda = sin(p0_lon_r)

49

c_lambda = cos(pO_lon_r)

- 'N' and 'Eps_sq' are conversion factors for a non-spherical
- Earth. TST is in meters.
- "a' is the semimajor axis of the Earth in meters

Eps_sq = 0.00669437999013
a = 6378137
den = (l-(Eps_sq*(s_phi)A2))A0.5
N = a/den

p0_x = (N+h)*c_phi*c_lambda?
p0_y = (N+h)*cjphi*s_lambda?
p0_z = ((N*(l-Eps_sq))+h)*s_phi?

- This section is for calculating position in LTP.
- Here is where the aircraft position will be fed in by the
- receiver as lat and Ion and alt and we will convert it to
-- ECEF {xyz}

- Use this section to feed in a string of stored data points

load "flight_test_rf_2.dat"
load "flight_test_rf_3.dat"
load "flight_test_rf_4.dat"
load "flight_test_rf_5.dat"
load "flight_test_rf_6.dat"
load "flight_test_rf_7.dat"
load Mflight_test_rf_8.dat"
load "flight_test_rf_9.dat"
load "flight_test_rf_10.dat"
load "flight_test_rf_14_ml.dat"

- Define the matrices which will be used to plot data from

MED_meters = []
pt2_lat_vec = []
pt2_lon_vec = []
h2_vec = []
pt2_x_vec = []
pt2_y_vec = []
pt2_z_vec = []

50

i= 1

- Set up loop to read in data and put into matrices
1 X

whik i i <= length(lat)

- convert deciseconds to degrees

■ pt2_lat = lat(i)/36000
pt2_lon = lon(i)/36000
h2 = hei_gps(i)

- Now make necessary computations for pt2.

pt2_lon_r = pt2_lon*(pi/l 80)
pt2_lat_r = pt2_lat*(pi/180)

s__phi2 = sin(pt2_lat_r)
c_phi2 = cos(pt2_lat_r)
s_lambda2 = sin(pt2_lon_r)
c_lambda2 = cos(pt2_lon_r)

den = (l-(Eps_sq*(s_phi2)A2))A0.5
N = a/den

pt2_x = (N+b2)*c_phi2*c lambda2
pt2_y = (N+h2)*c_phi2*s_lambda2
pt2_z = ((N*(l-Eps_sq))+h2)*s_phi2

pt2_x_vec = [Pt2_x_vec;pt2_x]
pt2_y_vec = [pt2__y_vec;pt2_y]
pt2_z_vec = [pt2_z_vec;pt2_z]

- Now to get the difference between the two points
--inECEF{xyz}.

del_x = pt2_x - p0_x
del_y = pt2_y - p0_y
del_z = pt2_z - p0_z

del = [del_x; del_y; del_z]

- The angle Lambda is the same as the longitude, while the angle
-- Phi is the same as the latitude.

51

lambda = pO_lon_r
phi = pO_lat_r

- Now we want to convert to a {NED} coordinate system.

C = [-sin(phi)*cos(lambda), -sin(phi)*sin(lambda), cos(phi);
-sin(lambda), cos(lambda), 0;
-cos(phi)*cos(lambda), -cos(phi)*sin(lambda), -sin(phi)]

- The rotation matrix (C) times the delta {x,y,z} will give
~ the aircraft's current position in the tangent plane in
-- meters.

NED = [C*del]'
NED_meters = [NED_meters;NED]
pt2_lat_vec = [pt2_lat_vec;pt2_lat]
pt2_lon_vec = [pt2_lon_vec;pt2_lon]
h2_vec = [h2_vec;h2]

i = i+l
endwhile

- Now to split the data into three groups.

north = NED_meters(:, 1)
east = NED_meters(:,2)
down = NED_meters(:,3)

- The following sigma and mean are only if the data is for
~ a point, not a line.

— First is lat and Ion
lat_mean_pt = mean(pt2_lat_vec)?
lat_sigmajpt = sqrt(variance(pt2_lat_vec))?

lon_mean_pt = mean(pt2_lon_vec)?
lon_sigma_pt = sqrt(variance(pt2_lon_vec))?

alt_mean_pt = mean(h2_vec)?
alt_sigma_pt = sqrt(variance(h2_vec))?

52

« Now for x, y, z

x_mean_pt = mean(pt2_x_vec)?
x_sigma_pt = sqrt(variance(pt2_x_vec))?

y_mean_pt = mean(pt2_y_vec)?
y_sigma_pt = sqrt(variance(pt2_y_vec))?

z_mean_pt = mean(pt2_z_vec)?
z_sigma_pt = sqrt(variance(pt2_z_vec))?

-Now for NED

north_mn_pt = mean(north)?
north_sigma_pt = sqrt(variance(north))?

east_mn__pt = mean(east)?
east_sigma_pt = sqrt(variance(east))?

down_mnjpt = mean(down)?
down_sigma_pt = sqrt(variance(down))?

— Here are the various plots

plotjl = plot(pt2_lat_vec,{rows=2,columns=2,title="lat vs time"})
plotjl = plot(pt2_lon_vec,{keep=plot_ll,graph_number=2,title-"lon vs time"})
plotjl = plot(h2_vec,{keep=plot_ll,graph_number=3, title="alt vs time"})
plotjl = plot(pt2Jat_vec,pt2Jon_vec,{keep=plotJl,graph_number=4,title="lat vs Ion"})?

plot_ned = plot(norm,{rows=2,columns=2,title-'north vs time"})
plot_ned = plot(east,{keep=plot_ned,graph_number=2,title="east vs time"})
plot_ned = plot(down,{keep=plot_ned,graph_number=3,title="down vs time"})
plot_ned = plot(north,east,{keep==plot_ned,graph_number=4,title="north vs east"})?

plot_neJl = plot(norm,east,{rows=l,columns=2,title-'north vs east"})
plot_neJl = plot(pt2Jat_vec,pt2Jon_vec,{keep=plot_neJl,graph_number=2,title-"lat vs
Ion"})?

plot_xyz = plot(pt2_x_vec,{rows=2,columns=2,title="x vs time"})
plot_xyz = plot(pt2_y_vec,{keep=plot_xyz,graph_number=2,title="y vs time"})
plot_xyz = plot(pt2_z_vec,{keep=plot_xyz,graph_number=3,title="z vs time"})
plot_xyz = plot(pt2_x_vec,pt2jy_vec,{keep=plot_xyz,graph_number=4,title="x vs y"})?

53

plot_3d = plot(norm,east,down,{rows=l,columns=2,title="north vs east vs down"})
plot_3d = plot(pt2_lat_vec,pt2_lon_vec,h2_vec,{keep=plot_3d,graph_number=2,title="lat vs Ion
vs h"})?

~ Need to determine the mean and std deviation
— from a line between the 2 known inputs
— This is for lat and Ion

- First divide straight line into same number of points
~ as data has
- y is number of pts only need line going one way, not both.
-- v is starting data pt number, w is ending data pt number

v = 45
w = 45

w = length(h2_vec)
z = (v:w)
y = length(z)
x = ones(y,l)

ptA_x = pt2_x_vec(v)
ptAjy = pt2_y_vec(v)
ptA_z = pt2_z_vec(v)

ptB_x = pt2_x_vec(w)
ptB_y = pt2_y_vec(w)
ptB_z = pt2_z_vec(w)

del_x = (ptB_x - ptA_x)/(y-l)
del_y = (ptBjy - ptAjy)/(y-l)
del_z = (ptB_z - ptA_z)/(y-l)

x_line = []
y_line = []
z_line = []

-- Now create evenly spaced points on the line

forj = l:y

x_pt=ptA_x+del_x*(j-1)
x_line = [x_line;xjpt]

54

y_pt=ptA_y+del_y * (j -1)
yjine = [y_line;y_pt]

z_pt=pt A_z+del_z * (j -1)
z_line = [z_line;z_pt]

endfor

xdiff = pt2_x_vec(v:w) - x_line
y_diff = pt2_y_vec(v:w) - y_line
zdiff = pt2_z_vec(v:w) - z_line

~ The following sigma and mean are only valid if the data
- is for a line and not for a point.

x_mean_path = mean(x_diff)?
y_mean_path = mean(y_diff)?
z_mean_path = mean(z_diff)?

x_sigma_path = sqrt(variance(x_diff))?
y_sigma_path = sqrt(variance(y_diff))?
z_sigma_path = sqrt(variance(z_diff))?

— Now for lat and Ion

ptAJat = pt2_lat_vec(v)
ptA_lon = pt2_lon_vec(v)
ptA_alt = h2_vec(v)

ptBJat = pt2_lat_vec(w)
ptB_lon = pt2_lon_vec(w)
ptBalt = h2_vec(w)

deljat = (ptBJat - ptA_lat)/(y-l)
deljon = (ptBJon - ptA_lon)/(y-l)
del_alt = (ptB_alt - ptA_alt)/(y-l)

latjine = []
lon_line = []
altjine = []

- Now create evenly spaced points on the line

55

forj = l:y
lat_pt=ptA_lat+del_lat*ö-l)
latline = [lat_line;latjpt]

Ionjpt=pt A_lon+del_lon* (j -1)
lon_line = [lon_line;lon_pt]

alt_pt=ptA_alt+del_alt*(j-l)
altjine = [alt_line;alt_pt]

endfor

lat_diff= ((lat(v:w))/36000) - latjine
lon_diff = ((lon(v:w))/36000) - lonjine
altdiff = h2_vec(v:w) - alt_line

lat_mean_path = mean(lat_diff)?
lon_mean_path = mean(lon_diff)?
alt_mean_path = mean(alt_diff)?

lat_sigma_path = sqrt(variance(lat_diff))?
lon_sigma_path = sqrt(variance(lon_diff))?
alt_sigma_path = sqrt(variance(alt_diff))?

— Now to develop sigma and mean for LTP
— Since line is out and back, we only need to look at
— one direction at a time. So 'y' will be turnaround
-pt.

pt2A_n = north(v)
pt2B_n = north(w)

pt2A_e = east(v)
pt2B_e = east(w)

pt2A_d = down(v)
pt2B_d = down(w)

dist_ab_n = pt2B_n - pt2A_n
dist_ab_e = pt2B_e - pt2A_e
dist_ab_d = pt2B_d - pt2A_d

deln_ab = dist_ab_n/(y-l)
dele_ab = dist_ab_e/(y-l)

56

deld_ab = dist_ab_d/(y-l)

n_line = []
e_line = []
djine = []

for k = 1 :y
n_pt = pt2A_n + deln_ab*(k-l)
e_pt = pt2A_e + dele_ab*(k-l)
d_pt = pt2A_d + deld_ab*(k-l)

n_line = [n_line;n_pt]
e_line = [e_line;ejpt]
d_line = [d_line;d_pt]

endfor

~ create vectors of the original data of the same
- length as the line I am trying to match

n_vec = north([v: 1 :w])
e_vec = east([v: 1 :w])
d_vec = down([v: 1 :w])

n_diff = n_vec - n_line
e_diff = e_vec - e_line
d_diff = d_vec - d_line

- Mean error and sigma for each of 3 directions in LTP

njmeanjpath = mean(n_diff)?
e_mean_path = mean(e_diff)?
djmeanjpath = mean(d_diff)?

n_sigma_path = sqrt(variance(n_diff))?
e_sigma_path = sqrt(variance(e_diff))?
d_sigma__path = sqrt(variance(d_difi))?

plot_vec = plot(n_vec,{rows=2,columns=2,title="north vs time"})
plot_vec = plot(n_vec,e_vec,{keep=plot_vec,graph_number=2,title="north vs east"})
plotjvec = plot(n_line,{keep=plot_vec,graph_number=3,title="line from A to B"})?

plot_over = plot(n_line,e_line,{title="line vs data"})

57

plot_over = plot(n_vec,e_vec,{keep==plot_over})?

mag_vec = ((n_diff)A(2) + (e_diff)A(2) + (d_diff)A(2))A(.5)
dist_ab_n = pt2B_n - pt2A_n
dist_ab_e = pt2B_e - pt2A_e
dist_ab_d = pt2B_d - pt2A_d

unit_vec = [(dist_ab_n/mag_vec),(dist_ab_e/mag_vec),(dist_ab_d/mag_vec)]'
diff_vec = [n_diff,e_diff,d_diff]

— Need to sum diffs and take norm in order to help in
— developing the 3-D sigma and mean which also require
— the unit vector of the straight line.

line_mag = ((dist_ab_n)A(2) + (dist_ab_e)A(2) + (dist_ab_d)A(2))A(.5)
unit_vec_n = dist_ab_n/line_mag
unit_vec_e = dist_ab_e/line_mag
unit_vec_d = dist_ab_d/line_mag

unit_cross_pt = []
for k = 1 :y

pt_vec = [n_diff(k); e_diff(k); d_diff(k)]
unit_vec = [unit_yec_n, unit_vec_e, unit_vec_d]

— To compute the cross product, use the skew symmetric matrix
~ for 3-d_dist_from_line = unit_vec CROSS pt_vec

t = [0, -unit_vec_d, unit_vec_e;
unit_vec_d, 0, -unit_vec_n;
-unit_vec_e, unit_vec_n, 0]

cross_prod = [t * (pt_vec)]'
unit_crossjpt = [unit_cross_pt;cross__prod]
k=k+l

endfor
unit_cross_pt

~ Set up to take the norm of each of the pts(all 3 directions)
— in order to obtain a 3d mag of the error

-- mag_dist_vec will be a vector with the 3-d magnitude of the distance

58

~ from the data pts to the straight line, this allows for
— non-constant velocity.

mag_dist_vec = []
for k = 1 :y

mag_dist = ((unit_cross__pt(k,l))A(2) + (unit_crossjpt(k,2))A(2) +
(unit_cross_pt(k,3))A(2))A(0.5)

mag_dist_vec = [mag_dist_vec; mag_dist]
k = k+l

endfor

mag_dist_vec?
mean_3d = mean(mag_dist_vec)?

sigma_3d = sqrt(variance(mag_dist_vec))?

- Don't forget to turn off the diary file
remove sessiondiary

59

60

LIST OF REFERENCES

1. Dana, Peter H., The Geographer's Craft Project, Department of Geography, The
University of Texas at Austin, [web page]

http://wwwhost.cc.utexas.edU/ftp/pub/grg/gcraft/notes/gps/gps.html#contents

2. Zanino, J. A., Uniform system for the Rapid Prototyping and Testing of Controllers
for Unmanned Aerial Vehicles, Master's Thesis, Naval Postgraduate School,
Monterey, CA, 1996.

3. Kaminer, I., AA3276: Intro to Avionics, Course Notes, Naval Postgraduate School,
Monterey, CA, Sep 1996.

4. Clynch, J. R., GPS Accuracy Levels, Notes, Naval Postgraduate School, Monterey,
CA, May 1996.

5. Motorola, Motorola GPS Quick Start Guide, Revision 3.0, March 1993.

61

62

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Doctor Isaac I. Kaminer, Code AA/KA
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5121

4. Doctor Richard M. Howard, Code AA/HO ..
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5121

5. Department of Aeronautics and Astronautics
CodeAA
Naval Postgraduate School
699 Dyer Rd. Rm. 137
Monterey, California 93943-5106

Lieutenant Peyton M. Allen
2215 Bear Creek Rd.
Kerrville, Texas 78028

63

